Bizimle bağlantı kurun

Dişliler

DIN ve ISO standartlarına göre yapılan mukavemet hesaplarında farklılıklar

Yayın tarihi:

on

Silindirik dişlilerin mukavemetini hesaplamak için çeşitli standartlar mevcuttur. Bu çalışmada 2008’deki düzeltmeler de dahil olmak üzere iki önemli hesaplama yöntemi olan DIN 3990 ve ISO 6336 arasındaki temel farklılıklara değinilecektir. Bu kapsamda özellikle diş yanağında çukurcuk (pitting) oluşumuna dayanım kabiliyeti ve diş dibi mukavemeti dikkate alınmaktadır.

Bir sonraki çalışmamızda da en son yayımlanan ISO 6336:2019 ile 2008’deki son düzeltmeler de dahil olmak üzere bir önceki ISO 6336: 2006 karşılaştırılmasını ele alacağız.

Silindirik dişlilerin dayanım kapasitesini hesaplamak için çeşitli standartlaştırılmış yöntemler mevcuttur. DIN 3990, 1987’deki son versiyonuyla uzun süredir değiştirilmedi, özellikle Avrupa’da yaygın olup ülkemizde de birçok kuruluşlarda kullanılmaktadır. 1996’da ISO 6336 “Düz ve helisel dişlilerin dayanım kapasitesinin hesaplanması” standardının ilk baskısı yayınlandı. ISO 6336 uluslararası geçerliliği olan bir standart olduğu için de buna uygun kullanılmaktadır. Bu yönü ile, özellikle Avrupa dışındaki iletişimi ve spesifikasyonu basitleştirmektedir. ISO 6336 aynı zamanda Avrupa’da ve özellikle rüzgar enerjisi gibi sektörlerde önem kazanmaktadır. ISO 6336’nın temeli DIN 3990’a dayanmaktadır. Sonuç olarak, her iki hesaplama yöntemi de çok benzerdir, ancak önemli farklılıkları da bulunmaktadır. Bu durum hesaplama yöntemini ISO 6336 olarak değiştirirken özellikle önem arz etmektedir. 2006’da ISO 6336’nın revize edilmiş bir versiyonu yayınlanmıştı. Bunda ve 2008’deki düzeltme sayfasında yeni bilimsel bilgilere dayanan çok sayıda değişiklik yapıldı.

Her iki standart da azalan doğruluk derecesine göre sınıflandırılan farklı hesaplama yöntemlerini içermektedir. Ölçülen değerlere ve detaylı analizlere dayanan A Yöntemi en kesin olanıdır, D yöntemi ise çok az veri gerektiren kaba bir hesaplama yöntemidir. Bu çalışmada çok ayrıntılı bir yöntem olması ve herhangi bir ölçüm değeri gerektirmemesi nedeniyle sadece B yöntemi ele alınmıştır.

Yorulma mukavemeti ve ömür faktörleri

DIN 3990 ve ISO 6336 arasındaki en önemli farklardan biri basitleştirilmiş Wöhler eğrisinin kullanılmasıdır (Resim 1). 

Yorulma mukavemeti için yük çevrim sayısına (malzemenin tipine bağlı olarak, genellikle 3×106 yük değişiminde) ulaşıldığında diş dibi mukavemeti için söz konusu ömür faktörü 1.0 olur. DIN 3990 standardında bu faktör daha yüksek sayıda yük çevriminde sabit kalırken, ISO 6336 ile 1010 yük çevrimine kadar azalır ve 0,85’e iner, 1010 yük çevriminden daha büyük değerlerde faktör 0.85’te sabit kalır. Bu, yanak yüzey basıncı ömür faktörü için de geçerlidir. Bu yaklaşım, gerçek bir yorulma mukavemetinin olmadığı yönündeki günümüz görüşüyle uyumludur ve doğrudan Amerikan standardı AGMA 2001’den gelmektedir.

Resim 1: Basitleştirilmiş Wöhler eğrisi

Bu fark, ISO 6336’ya göre yorulma mukavemeti aralığındaki dişlilerde DIN 3990’a göre yaklaşık %15 daha düşük emniyet katsayıları hesaplanmasına neden olur. Ayrıca, ISO 6336’ya göre, optimal malzeme kalitesi ve üretici deneyimi kanıtlanırsa, DIN 3990’a benzer Wöhler eğrisinin de kullanılabileceği söylenebilir. Hesaplamaları karşılaştırırken bu farka özellikle dikkat edilmelidir.

Helisel dişliler

Daha yeni bilimsel araştırmalara, özellikle FVA’nın (Alman Tahrik Tekniği Araştırma Birliği) dayanılarak, yanak dayanım yük kapasitesinin belirlenmesi için ISO 6336’nın 2008 düzeltme sayfasındaki helis açısı faktörü Zβ‘nin hesaplanması DIN 3990’a kıyasla önemli ölçüde değiştirildi. Önceki hesaplama yerine, bu değişiklikle “tersine değer” kavramı getirildi.Doğrudan karşılaştırma Resim 2’de gösterilmektedir. 

Resim 2: Helis açısı faktörü Zβ karşılaştırılması

Bu, önceki hesaplamalara göre, büyük bir helis açısının Hertz basıncında bir azalmaya yol açacağı anlamına gelir. Helis açı faktörünün Zβ tersine değeri, DIN 3990’a göre hesaplamaya kıyasla, Hertz basıncında bir artışa ve dolayısıyla silindirik helisel dişli çiftleri için yanak dayanım kapasitesinde bir azalmaya neden olur.

Malzeme çifti ve yüzey pürüzlülüğü

Ayrıca ISO 6336’nın 2006 versiyonunda, dişli yanakları arasındaki müsaade edilen Hertz basıncını hesaplamak ve böylece yanak dayanım kapasitesini belirlemek için kullanılan malzeme çifti faktörü Zw, bir önceki versiyona göre revize edilmişti. Bu faktör, farklı sertlikteki dişlilerle dayanım kapasitesindeki artışı hesaplamak için kullanılır. DIN 3990 (1996) ve ISO 6336 (2006) baskılarında, bu faktör yalnızca dişli çiftinin daha yumuşak olan malzeme yüzey sertliğine bağlıydı. ISO 6336 (2006) versiyonunda artık yüzey pürüzlülüğünün etkisi de malzeme çifti faktörünün hesaplanmasına entegre edilmişti, bu sayede yerel yanak eğrilik değerleri, çevresel hız ve viskozite de bu hesaplamaya dahil edilmiş oldu. Burada, daha sert dişlinin yüzeyi daha pürüzlü ise malzeme çifti faktörünün azaldığı anlamına gelir. Bu ise, sert dişlinin pürüzlü yüzeyinin daha yumuşak dişlinin aşınmasına da yol açabileceği bilgisine dayanmaktadır. Ancak bu aşınma ISO 6336’da bir hasar kriteri değildir. Bu nedenle malzeme çifti faktörü Zw‘nin alt sınırı 1.0 olarak sınırlanmıştır.

Yük dağılımı (genişlik) faktörü

DIN ve ISO arasındaki diğer bir fark, yük dağılımı faktörünün hesaplanması için kavrama sırasındaki yay rijitliğinin (diş rijitliği faktörü) cγ belirlenmesidir. KHβ faktörü, diş yanağı genişliği boyunca yük dağılımını dikkate almak için kullanılır. Eski ISO 6336’da, K‘nın hesaplanmasında, DIN 3990’a kıyasla diş rijitliği faktöründe cy %15’lik bir azalma ile çalışılır. Bu biraz daha küçük yük dağılımı faktörlerine neden olur.

İç dişlilerin diş dibi dayanım kabiliyeti

ISO 6336:2006 versiyonunda iç dişlilerin diş dibi gerilme hesabına yeni bilgiler önemli ölçüde uyarlanmıştır. Bu değişikle artık diş formu, daha önce kullanılmakta olan eşdeğer kremayer yöntemi yerine fellows veya frezeleme/azdırma yöntemlerine göre hesaplanabilmekte ve üretilebilmektedir. Bu sayede, öncekine göre çok daha pratik veriler elde edilebilmektedir. Bu, diş formu ve YF ve YS gerilme düzeltme faktörleri değerlerinde önemli değişikliklere neden olur. Ayrıca, 60° teğet üzerindeki kritik kesit, iç dişliler için yeniden tanımlanmıştır. Şimdiye kadar iç dişlilerde kritik kesit DIN 3990’da ve ISO 6336’nın önceki baskısında 30° teğetleri olarak tanımlanıyordu (Resim 3). İç dişliler için diş dibi dayanım kabiliyetinin daha doğru hesaplanabilmesi genellikle diş dibinde daha yüksek emniyet seviyeleri sağlar. Ancak burada dişli çemberi cidar kalınlığının etkisi de dikkate alınmalıdır.

Resim 3: İç dişlilerde 60° teğetler

Dişli çemberi kalınlığı

Planet dişli veya halka dişliler gibi ince bir çember üzerine açılmış dişlilerde, diş dibinde oluşan ek yükleri hesaba katmak için, halka dişli kalınlık faktörü YB oluşturulmuştur. Burada düşük dişli çember cidar kalınlığı nedeniyle diş dibi gerilimindeki artış; dış dişliler söz konusu olduğunda diş yüksekliği, iç dişlilerde ise normal modül üzerinden dikkate alınır. Dayanım kapasitesinde bir azalma; çember cidar kalınlığı sR < 1,2 x diş yüksekliği ht veya yaklaşık 2,8 x normal modül mn olan dış dişlilerde, sR < 3,5 x normal modül mn olan iç dişlilerde oluşur.

Örnek karşılaştırma

Yukarıda bahsedilen farklılıkların etkisini gösterebilmek için, 2008’deki düzeltmeler dahil olmak üzere DIN 3990 ve ISO 6336 arasında karşılaştırmalı hesaplamalar yapılmış, seçilen birkaç vaka çalışması aşağıda sunulmaktadır. Tablo 1, düz dişlilerde malzeme çifti faktörü, yük dağılımı faktörü ve ömür faktörleri YNT ve ZNT kullanılarak bir karşılaştırma örneğini göstermektedir. 

Karşılaştırmada, sadece her etkileyen para metre ayrı ayrı ele alınmış, böylece ilgili yüzde sapması sadece karşılık gelen etkileyen parametre ile ilişkili olarak görülmekte olup bahsedilen diğer faktörlerin birçoğunun karşılıklı etkisi olmamaktadır.

Tablo 1: Düz dişli örneği

Hesaplamalar web tabanlı hesaplama yazılımı eAssistant ile yapılmış olup burada DIN 3990 ve ISO 6336 seçimi arasında kolay geçiş sağlanabilmektedir. Malzeme çifti faktörünün etkisi, sertleştirilmiş bir dişli çark ile ıslah edilmiş bir dişli çarkın oluşturduğu dişli çiftinde en fazla ortaya çıkmaktadır. İki sertleştirilmiş dişliden oluşan dişli çiftinde DIN ve ISO arasındaki fark oldukça azdır. Basitleştirilmiş Wöhler eğrisi ve ilgili ömür faktörleri için yapılan ayarlamalar ile hesaplanan emniyet katsayılarındaki fark da açıkça görülebilmektedir. 

Tablo 2’de görüldüğü üzere, helis açısı faktörünün etkisi değeri arttıkça belirgin bir şekilde artmaktadır. Tablo 3’teki örnek, hesaplamadaki değişikliklerin iç dişlilerin diş dibi dayanım kapasitesini ne ölçüde etkilediğini göstermektedir. Dişli çemberi kalınlığının etkilemediği durumlarda, örneğin büyük halka dişli dış çapı 1.500 mm, fark %30 civarında olup çok büyüktür. Dişli çemberi kalınlığının bir etkisi olduğu durumda, bu etki DIN’e kıyasla ISO’ya göre diş dibi emniyetinde sadece yaklaşık %15’lik bir artışa neden olur. Dişli çemberi kalınlığı ve dolayısıyla çember dişli dış çapı daha da küçültülürse çok küçük çember dişli kalınlıkları ile ISO’ya göre hesaplamalarda DIN hesabına göre daha düşük diş dibi emniyet değerleri elde edildiği görülebilir.

Tablo 2: Helis dişli örneği

ISO 6336, son yıllarda yeni bilgilerin de dahil edildiği çok daha modern bir hesaplama yöntemidir. 2019 yılındaki revizyonu da bunun bir sonucudur. Bu nedenle sektörlerdeki gelişmeler ve talepler doğrultusunda hesaplamalarda bu standardın tercih edilmesi düşünülebilir. Ancak, DIN 3990’a göre yapılan önceki hesaplamalar değiştirilirken, özellikle yukarıda listelenen farklar dikkate alınmalıdır.

Tablo 3: İç dış örneği (Dişli çemberi kalınlığının etkisi)

Uzman ellerden size

GWJ Technology GmbH, makine mühendisliğinde çeşitli standart hesaplama yazılımlarının yanında teknik satış süreçlerinin optimizasyonu için kullanılabilen CAD verilerine sahip müşteriye özel hesaplama ve görsel ürün/ürün grupları seçim araçlarına da odaklanmaktadır. Bunlar basit makine elemanları için standart yazılımlardan, 5 eksenli CNC işlemleri için gerçek 3B-diş formu geometrilerine yönelik özel dişli yazılımına kadar uzanmaktadır. Amaç, yakın işbirliği içinde ve verimli teknolojileri kullanarak müşterilere yeni rekabet avantajlarını sağlayabilmek için en iyi şekilde destek olmaktır. Uzmanlık, yüksek kalite standartları ve en yüksek müşteri memnuniyeti için mükemmel hizmet, şirket felsefesinin temel taşlarıdır.

Pratik ve yetenekli üçlü olarak nitelendirilen “eAssistant veya TBK+SystemManager+CAD Arayüz” yazılım paket veya modülleri; uzaktan çalışmanın ağırlık kazandığı bu dönemde satın almak yerine 

1-3-6-12 aylık sürelerle kiralanabilmekte ve ayrıca bakım sözleşmesi ve ücretlerine de gerek kalmamaktadır.

Bu uygulamanın; makine üretimi sektöründeki (özellikle ihracat yapan ve savunma sanayi alanında çalışan) tasarım ve üretim yapan küçük ve orta ölçekli işletmelerin ihtiyaçlarını ertelemeden gerçekleştirebilecekleri bir fırsat olduğunu görüyoruz.

İhtiyaç halinde şirketimiz size mühendislik hizmetleri veya uzaktan eğitim programlarıyla uzmanlık bilgileri de sunmaktadır.

Not: Bu çalışmanın orijinal hali Almanca olarak, GWJ Technology GmbH Genel Müdürü Mak.Yük.Müh. Gunther Weser tarafından kaleme alınmış olup “Antriebstechnik “ dergisinde 10/2011 tarihinde yayımlanmıştır. Söz konusu makale Dr. Müh. Ender Önöz tarafından Türkçeye çevrilmiş ve derlenmiştir.

Devamını oku
Yorum bırak

Bir Cevap Yazın

Dişliler

Dişli çarklarda sülfürizasyon (Sulfinizing) işlemi ile yüzey sertleştirme ve tribolojik olarak çarkların çalışma performansının artırılması

Yayın tarihi:

on

Yazan

1) Sülfürizasyon (Sulfinizing) işlemi nedir?

Ülkemizde çok bilinen bir proses olmadığı için öncelikle makaleme bu işlemi tanıtarak başlamak istiyorum. Sülfürizasyon (Sulfinizing), tarihsel olarak Almanya’da geliştirildi ve uygulandı. İlk defa ne zaman uygulandığına dair kesin bir tarih vermek zordur, ancak bu işlem, 20. yüzyılın başlarında Almanya’da metal işleme ve sertleştirme teknolojilerinin geliştiği bir dönemde ortaya çıkmıştır.

Sülfürizasyon, özellikle çelik dişlilerin yüzey sertliğini artırmak ve aşınma dayanımı artırmak amacıyla kullanılmaktadır. Bu işlem, dişlilerin ve dişli çarklarının endüstriyel uygulamalarda daha dayanıklı ve uzun ömürlü olmasını sağlamak için önemli bir katkı sağlamıştır.

Çeşitli ülkelerde benzer amaçlar için farklı adlar altında da uygulanmıştır. Ancak, Almanya’da geliştirilmiş ve başlangıçta kullanılmış olan bu ad altındaki işlem, yaygın olarak bilinen ve kullanılan bir terimdir.

“Sulfinizing gears process” genellikle “dişli sülfürleme işlemi” olarak adlandırılır ve dişli çarkların sertleştirilmesinde kullanılan özel bir ısıl işlem yöntemidir. Bu işlem, dişlilerin yüzey sertliğini artırmak ve dişli yanaklarında kaygan bir tabaka oluşturarak aşınmaya dayanıklılıklarını iyileştirmek amacıyla yapılır. İşlemin temel amacı, dişlilerin daha uzun süre dayanmasını sağlamak ve tribolojik olarak daha dirençli hale getirmektir.

Hassas ölçülerdeki malzemelere ön sertleştirme finiş işleme ve düşük sıcaklıkta sülfürizasyon işlemi önerilmektedir.

2) Sülfürizasyon işlemi prosesi nasıldır?

Hazırlık: İlk adım, dişli çarklar yağlardan çok iyi temizlenmeli ve işleme tabi tutulmadan önce kirliliklerden arındırılmalıdır. Dişliler ön sertleştirmeli durumda iken finiş işlenmiş halde sülfürizasyon işlemi uygulanmalı veya yüksek sıcaklıkta östenit fazıyla beraber sülfürizasyon işleminden sonra hızlı soğutulup komple sertleştirilmelidir. Parça yüzeylerinde tufal, kabuk bulunmamalıdır.

Isıl işlem: Dişli çarklar yüksek sıcaklıklarda ısıtılır. Bu sıcaklık, metalin sülfür ile etkileşimini kolaylaştırır. İşlem sıcaklığı, 450°C ile 950°C işlenen malzemenin türüne bağlı olarak değişebilir.

Sülfürleme: Isıtılan dişli çarklar, sülfür buharı veya sülfür içeren bir ortam içine yerleştirilir. Sülfür, metal yüzeyine nüfuz eder ve metal ile reaksiyona girer. Sülfürizasyon işlemi, genellikle dişli çarkların yüzeyinde mikro yapısal değişikliklere yol açar ve bu nedenle işlenen yüzeyin derinliği oldukça sınırlıdır. Genellikle işlenen derinlik, mikro- metre (μm) veya milimetre (mm) cinsinden ifade edilen çok ince bir tabakayı içerir.

Sementasyon çeliklerinden yapılmış dişlilerin yüzeyindeki mikro yapının dönüştürülmesini içerir. Bu işlem sırasında, sülfürün metal yüzeyine nüfuz etmesi ve yüzeyin daha sert bir form alması sağlanır. İşlenen derinlik, işlem parametrelerine (sıcaklık, süre, kullanılan sülfür bileşenleri vb.) ve işlenen malzemenin türüne bağlı olarak değişebilir, ancak genellikle 01-05 mm arasında sertlik derinliği alabilir. Özel uygulamalarda bu derinlik maksimum 0,7mm kadar çıkabilmektedir. Sülfürazson ile 600HV-1100 HV arasında sertlik değeri alır ve yüzeyde aşınmaya dayanıklı yüzey gerilimi yüksek kaygan bir faz oluşur.

Bu nedenle, sülfürizasyon işlemi dişli çarkların yüzeyindeki sertliği artırmak ve aşınmaya dayanıklılığı artırmak amacıyla kullanılır, küçük modüllü dişli uygulamalarında yeterli olmasına karşın büyük modüllü dişlilerde ise çoğu zaman işlenen derinlik yeterli değildir ve dişli çarkın temel mekanik özellikleri üzerinde derin bir etki yapmaz.

Bu işlem genellikle otomotiv endüstrisi, endüstriyel makineler, taşıma ekipmanları ve dişli üretiminde kullanılır.

Soğutma:İşlem tamamlandığında, dişli çarklar fırın içinde hızlı bir şekilde ortam sıcaklığına soğutulur

Temizlik ve muayene: İşlem sonrası dişliler mekanik özellikleri açısından muayene edilir. Herhangi bir kusur kontrol edilir ve giderilir ve gerekirse işlem tekrarlanabilir.

Özellikle sıcaklık değerleri işlemde kullanılan malzemeye ve işlem spesifikasyonlarına bağlı olarak değişebilir. Yukarıda belirtilen 450°C ile 950°C aralığı, genel bir referans aralığıdır, ancak gerçek sıcaklık değerleri işlem spesifikasyonlarına göre ayarlanır. Sülfürizasyon işlemi düşük sıcaklık ve yüksek sıcaklıkta uygulanabilmektedir. Yüksek hassasiyetli parçalarda ön sertleştirme sonrası 450°C -600°C arası sülfürizasyon prosesi önerilmektedir. Geniş toleransta olan parçalar ise yüksek sıcaklıklarda işlem görür.

İşlemde kullanılan sülfürün türü ve konsantrasyonu, işlem süresi ve sıcaklık da işlem sonucunu etkileyen faktörlerdir. Bu nedenle, her işlem belirli bir uygulama için özelleştirilir.

3) Sülfürizasyon tabakasının avantajları nelerdir?

•Yüzey tabakasının istenilen özelli4klerde oluşturulmasını sağlar.

•Proses esnasında oluşan sülfür katmanlar parçanın aşınmasını engeller.

•Proses, işlenmiş elemanların yüksek dayanıklılığını garanti eder.

•Sürtünme katsayısını azaltır Korozyona karşı direnci artırır.

•Çelik alt tabakanın yorulma mukavemetini arttırır.

•Sunulan teknoloji, üretim ve işletme maliyetlerini düşürür.

4) Sülfürizasyon işleminin tribolojik (sürtünme, aşınma ve kayma) performansı artırarak dişli çarklarda oluşturduğu faydalar nelerdir?

Sülfürizasyon, dişli çarkların yüzey sertliğini artırır ve bu da aşınma dayanımını artırır. Dişli çarkların birbirine sürtünmesi veya yüksek basınç altında çalışması durumunda, bu ekstra sertlik aşınma miktarını azaltır ve dişli çarkların ömrünü uzatır.

Sülfürizasyon işlemi dişli yanaklarında oluşturduğu sülfür tabakası ile yüzeyler genellikle daha pürüzsüzdür. Bu, dişli çarkların birbirine daha iyi uyum sağlamasına ve sürtünme kaybını azaltmasına yardımcı olur. Bu yüzeyler, yağlama maddelerini daha iyi tutabilen mikro çukurlar ve yapışkanlığa sahip olur. Aynı zamanda yağ filminin daha iyi tutunmasına da katkı sağlar. Bu, yağlama sistemlerinin daha etkili çalışmasına ve dişli çarkların daha az sürtünme ve aşınma ile çalışmasına yardımcı olur.

Çelik alt tabakadaki yorulma mukavemetini arttırması sebebi ile genellikle daha yüksek yük taşıma kapasitesine sahiptir. Bu, dişli çarkların daha büyük yükleri taşımasına ve daha ağır görevler için kullanılmasına olanak tanır. Sülfür, metalleri korozif ortamlardan koruma yeteneği olan bir elementtir. Sülfürizasyon işlemi, dişli çarkların korozif ortamlara karşı daha dayanıklı hale gelmesini sağlar. Dişli çalışmasında temas noktasındaki yüzeyin daha yüksek sıcaklıklarda dayanıklılığını artırır. Bu, yüksek sıcaklık uygulamalarında kullanılan dişli çarklar için önemlidir.

Tüm bu avantajlar, dişli çarkların daha uzun ömürlü olmasını, daha az bakım gerektirmesini ve daha güvenilir bir şekilde çalışmasını sağlar. Bu nedenle, Sülfürizasyon işlemi, dişli çarkların tribolojik performansını artırmak ve genel sistem verimliliğini iyileştirmek için şuan için yurt dışında kullanılan bir yöntemdir. Bu konuda Teknovak firması çalışmalarını sürdürmektedir.

5) Ağır iş makinelerindeki dişli uygulamalarındaki sonuçlar

2012 yılında yayınlanan “The low-temperature ion sulfurizing technology and itsapplications” başlıklı makalede sülfürizasyon işlemine tabi tutulan dişliler ile ilgili bir uygulama yer almaktadır. Ağır iş makinelerinde kullanılan dişliler, ağır stres ve yük altında çalışır. Aşınma nedeniyle hasar görmeleri kolaydır ve yorulmaya neden olur. Bu nedenle sülfürizasyon işlemi ile sertleştirilmiş dişliler makinelerin güvenilirliğini ve kullanım ömrünü ciddi şekilde etkilemiştir. Bir başka uygulamada bir tankın dişli kutusu ve yan yavaşlatıcısının tahrik dişlileri ele alınmıştır. Sülfürizasyon işlemi uygulanan dişliler gerçek araçta test edilmiştir. Sonuç olarak, Sülfürizasyon işleminden sonra aşınmanın dayanımı %180 oranında arttığı görülmüştür.

Sonuç olarak

Sülfürizasyon işlemi, dişli çarkların daha uzun ömürlü olmasını, daha düşük sürtünme kaybı ve daha yüksek verimlilik sağlamasını ve genel olarak tribolojik performanslarını artırmasını sağlar. Bu, endüstriyel uygulamalarda dişli çarkların daha güvenilir ve ekonomik olmasını sağlar.

Referanslar

[1] Effect of sursulf treatment on fatigue life of medium carbon steel spur gears s. Krishnamurthy and a. Ramamohana rao)

[2] Structureandpropertiesofsurfacelayersofselected constructional steels after sulfonitriding S. Lesz*, E. KalinowskaOzgowicz, K. Go3ombek, M. Kleczka

[3] The low-temperature ion sulfurizing technology and its applications- G.Z.Maa, B.S.Xua, H.D.Wanga*, G.L Lib, S.Zhangb -23-25 October 2012

[4] Teknovak firması yöneticilerinden proses hakkında bilgi alınmıştır.

Devamını oku

Dişli Üretim servisleri

Dişli çarklarda “pitting” aşınması neden önemli; pitting oluşumunu nasıl engelleriz?

Yayın tarihi:

on

Yazan

[voiserPlayer]

1.Dişli çarklarda triboloji kavramı nedir?

Triboloji, yüzeylerin teması, sürtünme, aşınma ve yağlama gibi konuları inceleyen multidisipliner bir bilim dalıdır. Triboloji bilimi dişli çarkların aşınma ve kırılması sebeplerinin incelenmesinde dişli mühendislerinin yoluna ışık tutar. Tribolojinin temel konularından biri sürtünmedir: Sürtünme, iki yüzeyin birbirine temas ettiğinde karşılaştığı dirençtir. Dişli çarklarda, sürtünme dişli yüzeyleri arasında enerji kayıplarına neden olur ve bu da verimliliği düşürür. Tribolojinin bir diğer önemli konusu aşınmadır: Aşınma, yüzeylerin teması sonucunda yüzeylerdeki madde kaybını ifade eder. Dişli çarklarında, yüzeylerin aşınması dişli profillerinin bozulmasına ve dolayısıyla sistemin performansının düşmesine yol açar. Triboloji, sürtünme ve aşınma problemlerinin çözümü için yağlamanın incelenmesiyle de ilgilenir. Yağlama, yüzeylerin arasına bir yağlayıcı madde (genellikle yağ veya gres) sürerek sürtünmeyi azaltmayı ve aşınmayı önleyerek yüzeyleri korumayı amaçlar. Dişli çarklarda, uygun yağlama sürtünmeyi azaltabilir, ısıyı dağıtarak sistemin aşırı ısınmasını engelleyebilir, aşınmayı önleyebilir ve sistemin ömrünü uzatabilir. 

Resim 1: Dişli yağlanması

Resim 1: Dişli yağlanması

Yüzeylerin teması, dişli profilinin şekli, malzeme seçimi ve yağlama gibi faktörler, dişli çarkların performansını belirler. İyi bir triboloji anlayışı; daha verimli, dayanıklı, uzun ömürlü ve sessiz çalışan dişli çark sistemlerinin tasarlanmasına yardımcı olabilir. Dişli çarklarda kullanılan malzemeler, yüzeylerin sürtünme ve aşınma direncini etkiler. Tasarım aşamasında dikkat edilecek triboloji bilgisi, malzeme seçiminde doğru kararlar verilmesine katkı sağlar.

Triboloji, yüzey kaplamalarının geliştirilmesi ve uygulanması konusunda da rol oynar. Özel kaplamalar, yüzeylerin sürtünme direncini artırabilir, aşınmayı azaltabilir ve yağlama özelliklerini iyileştirebilir.

Triboloji, makinelerin performansını artırmak, enerji verimliliğini yükseltmek ve aşınma sonucu oluşan maliyetleri azaltmak gibi bir dizi uygulama alanına sahiptir. Dişli çarklar gibi karmaşık mekanizmaların tasarımı ve işleyişi, triboloji prensiplerine uygun olarak yapıldığında daha güvenilir ve verimli hale gelebilir.

Resim 2- Pitting kaynaklı kırılmalar

Resim 2- Pitting kaynaklı kırılmalar

2.Dişli çarklarda “pitting” aşınmasının önemi

Pitting terimi, dişli çarklarda yaygın bir aşınma türünü ifade eder. Dişli çarklar, makinelerde güç ve hareket aktarımını sağlamak için kullanılan bileşenlerdir; ancak yüksek yükler altında çalışırken veya yetersiz tasarım, üretim veya yağlama koşulları nedeniyle dişli çarklarda çeşitli aşınma tipleri oluşabilir. Bunlardan biri de ‘pitting’tir.

Pitting, dişli yüzeylerinde küçük çukurlar veya oyuklar şeklinde görünen bir aşınma tipidir. Başlangıç pitting, normal pitting ve ilerleyen pitting gibi 3 şekilde görülebilir. Bu oyuklar, genellikle dişli yüzeylerin üzerinde düzensiz bir şekilde dağılmış gibi görünür. Pittingin ana nedeni, tekrarlayan yüklere ve sürtünme kombinasyonlarına dayalı yorgunluk ve aşınma süreçleridir.

Resim 3: Başlangıç Pitting

Resim 3: Başlangıç Pitting

3.Başlangıç pittingi

Yeni imal edilmiş olan dişlilerin pürüzlü yüzeyinden kaynaklanan, yüksek gerilimler sebebiyle oluşur. Çok kısa zamanda büyür, maksimum dereceye ulaşır ve dişlinin devam eden çalışması sırasında yüzeyin parlaklaşmasıyla etkisini kaybeder. Genellikle yuvarlanma noktasının tam üzerinde veya biraz altında yer alan dar bir alanda görülür. En fazla tamamen sertleştirilmiş dişlilerde görülür. Tamamen sertleştirilmiş dişlilerin çoğunda başlangıç pittingi için tedbire ihtiyaç duyulmaz. Çok kritik ve özel yerlerde kullanılacak dişlilerin imalatı sırasında hassas kavrama gerektiren durumlarda, düşük hız ve düşük yüklerde (alıştırma), dişlerin bakır ya da gümüş ile kaplanması gibi tedbirler alınabilir.

Resim 4: Normal Pitting

Resim 4: Normal Pitting

4.Normal pitting

Tam kapasite ile yüklenmiş, tamamen sertleştirilmiş dişlilerde yuvarlanma dairesi altında ortaya çıkan normal pitting, diş yüzeyinde yuvarlanma dairesi altında kalan bölgeyi kaplayan, mütevazı büyüklükteki çukurcuklar şeklinde kendini gösterir. Devam eden çalışma sonucu çukurcuk sınırları, görünürde başka çukurcuklar oluşmayacak şekilde aşınır. Yüzeydeki mikro çatlakların diş profili boyunca gösterdiği yönlenme sonucu, yuvarlanma dairesi altında kalan bölge, dişin diğer bölgelerinden çok daha fazla pittinge açıktır. 

Dişlilerin yuvarlanma dairesi altındaki bölgelerinde oluşan çatlaklar, aynı zamanda yağlayıcıyı içinde hapseder. Hidrolik basıncın kama etkisi sonucunda bu çatlaklar hızlıca çukurcuk haline dönüşür. Yuvarlanma dairesi üstündeki bölgede ise, temas sırasında yuvarlanma ile yüzeydeki boşluklar kapatılmaya fırsat kalmadan yağlayıcı, girmiş olduğu çatlaklardan dışarıya çıkmaya zorlanır. Bu nedenle söz konusu bölgedeki çatlaklar hidrolik kama etkisine maruz kalmaz. Sadece birkaç çukurcuk oluşur.

Resim 5: İlerleyen Pitting

Resim 5: İlerleyen Pitting

5.İlerleyen pitting 

Dişin taksimat ve temel daireleri arasında kalan bölgede başlar. Çukurcuklar yüzey hasar görene kadar hem boyut hem de sayı bakımından artış gösterir. Çalışma başlangıcında tahrip eden pitting, yaklaşık olarak başlangıç pittingi kadar yoğundur. İlerleyen zamanla yoğunluğu daha da artar. İlerleyen pitting çoğunlukla, başlangıç pittinginin azaltılamadığı, yüzey pürüzlülüğünün neden olduğu aşırı gerilmeler sonucu oluşur. Diş yüzeyinin sertliği belirli bir sınırın altında ise bu bozulmanın gerçekleşmesi çok yüksek bir ihtimaldir. 

Dişliler aşırı derecede yükle zorlandıklarında, genellikle döndüren dişlinin diş dibinde belli bir çevrim sonucunda şiddetli pitting oluşabilir. Döndüren ve döndürülen dişlilerin temas eden yüzeyleri aynı gerilmelerin etkisi altında olmasına rağmen döndüren dişli, döndürülen dişliye nazaran daha fazla yıpranır. Çünkü çoğunlukla küçük çaplı olan döndürülen dişli daha çok çevrim yapar ve daha fazla sayıda gerilime tekrarının etkisi altında kalır. Bunlara ek olarak, döndüren dişlinin dişleri üzerindeki kayma yönü ile yüzeyler arasındaki yuvarlanma yönü terstir. Sonuçta malzeme yüzeyinde oluşan gerilme, yorulma çatlaklarının büyümesini kolaylaştırır.

Resim 6: Dişlilerde kontak noktası

Resim 6: Dişlilerde kontak noktası

6.Pitting önlemek için diş formunun optimize edilmesi

Bu, pitting önlemek için dişli çarkların yüzey yorgunluğunu ve pitting hasarını minimize etmek amacıyla yapılan önemli bir adımdır. Diş formunun doğru şekilde tasarlanması, yük dağılımını optimize ederek yüzey yorgunluğunu azaltabilir ve böylece pitting riskini azaltabilir. 

Diş profil optimizasyonu: Diş profili, yükün eşit şekilde dağılmasını sağlayacak şekilde optimize edilmelidir. Yükün yüksek stres bölgelerinden uzaklaştırılması, pitting riskini azaltabilir. Diş profilindeki özel modifikasyonlar ve radyüsler, stres konsantrasyonunu azaltabilir.

Kontak oranı ve kontak alanı: Daha geniş bir kontak alanı ve kontak oranı, yükün daha fazla yüzeye yayılmasını sağlar. Bu, yüzeydeki gerilmeleri ve stres konsantrasyonlarını azaltarak pitting riskini düşürebilir.

Diş yüzey pürüzlülüğü: Yağlama filmi oluşturulması ve yükün doğru şekilde dağıtılması için kritik öneme sahiptir. Daha düzgün ve iyi işlenmiş yüzeyler, daha iyi yağlama sağlayabilir ve pitting riskini azaltabilir.

Diş yük dağılımı: Yük dağılımı, her bir dişin yükü nasıl taşıdığını belirler. Eşit yük dağılımı, her bir dişin aynı şekilde çalışmasını sağlar ve böylece pitting riskini azaltabilir.

Diş geometrisi ve yüzey işlemleri: Diş yüzeyine uygulanan özel geometrik değişiklikler ve yüzey işlemleri, daha dayanıklı ve pittinge karşı dirençli yüzeyler oluşturabilir. Bu, diş yüzeyinin pürüzlülüğünü azaltabilir ve pitting riskini düşürebilir.

Yüzey sertleştirme ve kaplamalar: Diş yüzeylerine uygulanan yüzey sertleştirme yöntemleri veya kaplamalar, daha yüksek dayanıklılık ve pitting direnci sağlayabilir. Bu yöntemler, yüzeydeki stres konsantrasyonlarını azaltabilir ve pitting riskini düşürebilir.

Titreşim analizi ve tasarım optimizasyonu: Tasarım aşamasında titreşim analizleri yaparak, diş formunun titreşim davranışını değerlendirebilirsiniz. Bu analizler, stres noktalarını belirleyerek diş formunu optimize etmenize yardımcı olabilir.

Malzeme seçimi ve dayanıklılık: Pittingi önlemek amacıyla malzeme seçimi, diş formunun optimize edilmesinde kritik bir faktördür. Malzeme seçimi, yorulma dayanımını ve tokluğu içermelidir.

7.Dişli çarklarda pitting önleme stratejilerinde yağlama sisteminin rolü nedir?

Dişli çarklarda pitting önleme stratejileri arasında yağlama sisteminin rolü oldukça kritiktir. Yağlama sistemi, dişli çarklardaki yüzey yorgunluğunu azaltarak ve pitting riskini minimize ederek genel performansı artırır.

Dişli çarkların yüzeyleri arasında bir yağ filmi oluşturarak metal yüzeylerin doğrudan temasını engeller. Bu yağ filmi, yüzeylerin sürtünme ve aşınma nedeniyle zarar görmesini engeller ve pitting riskini azaltır. Yağlama sürtünmeyi azaltarak ısının oluşumunu kontrol eder. Düşük sürtünme ve kontrol edilmiş sıcaklık, yüzeylerin aşırı ısınmasını ve termal stresleri azaltır. Bu da pitting riskini düşürür. Yağlama filmi, yüzeyler arasında olası teması engeller. Bu, yüzey yorgunluğunu azaltır ve pitting hasarını önler. Yağlama, yüzeylerin birbirine temas etmesini engellediği için yüksek yük altındaki bölgelerde stres konsantrasyonunu azaltabilir. Yağlama yüzeylerin korozyona uğramasını engeller. Korozyon, yüzeylerin zayıflamasına ve pitting riskinin artmasına neden olabilir. Doğru yağlama ile korozyon önlenir ve pitting riski azaltılır. 

Pitting önleme stratejilerinde doğru yağlama yağı seçimi önemlidir. Yağlama yağının viskozitesi, kimyasal bileşimi ve diğer özellikleri, yağlama filmi oluşturma ve yüzey koruması açısından etkilidir. Yağlama sisteminin etkinliğini takip ederek yağlama filmi kalitesi ve sıcaklık kontrolü optimize edilir. Bu, pitting riskini azaltmada kritik bir rol oynar. Yağlama sistemleri dişli çarkların çalışma koşullarına ve yüklemelerine uygun olarak tasarlanmalıdır. Doğru yağlama sistemi tasarımı, pittingi önlemek için gereken yağlama filmi kalitesini sağlayacaktır. Yağlama sistemi, uygun frekansta ve miktarında yağlama sağlamalıdır. Aşırı yağlama veya yetersiz yağlama, pitting riskini artırabilir. Doğru yağlama sıklığı ve miktarı pittingi önlemek açısından kritiktir.

8.Pittingi önlemek için dişli çark montajında doğru şaft hizalamasının önemi

Dişli çark montajında doğru şaft hizalaması, pittingi önlemek ve dişli çarkların uzun ömürlü ve güvenilir bir şekilde çalışmasını sağlamak için son derece önemlidir. Yanlış şaft hizalaması, yüklerin dengesiz şekilde dağılmasına, sürtünme artışına ve sonuç olarak yüzey yorgunluğuna ve pitting hasarına neden olabilir.  Bu, belirli dişlilerin daha fazla yüke maruz kalmasına ve buna bağlı olarak pitting riskinin artmasına yol açar. Yanlış hizalama sonucunda dişli çarklardaki yüzeyler arasında sürtünme artar. Bu, ısının oluşumunu artırarak yüzey yorgunluğunu artırabilir ve pitting riskini artırabilir. Dişli çarklardaki stres konsantrasyonlarını artırabilir. Bu da belirli bölgelerde yüksek zorlanmaya ve yüzey yorgunluğuna neden olabilir, pitting riskini artırabilir.

Yanlış hizalama, yağlama sisteminin etkinliğini etkileyebilir. Yağ filmi oluşturma ve yüzey koruma yetenekleri azalabilir, bu da pitting riskini artırabilir.

Dişli çarklarda titreşim ve gürültü seviyelerini artırabilir. Bu titreşimler, yüksek stresli bölgelerde pitting riskini artırabilir. Doğru şaft hizalaması, dişli çarkların dengeli bir şekilde çalışmasını ve stabil bir performans sergilemesini sağlar. Bu, yüklerin dengeli şekilde dağılmasını ve pitting riskinin azalmasını destekler.

Yanlış hizalama, diş profilini değiştirebilir ve yük dağılımını etkileyebilir. Bu da pitting riskini artırabilir. Doğru hizalama, diş profili kontrolünü kolaylaştırır.

9.Sonuç olarak pittingi önlemek için;

Diş formunun optimize edilmesi, pittingi önleme stratejilerinin önemli bir parçasını oluşturur. Dişli çark tasarımında yukarıdaki faktörleri dikkate alarak yapılan optimizasyonlar, dişli çarkların daha uzun ömürlü olmasını ve pitting riskini minimize etmesini sağlar. 

Yağlama sistemi dişli çarklarda pitting riskini azaltmak ve yüzey yorgunluğunu önlemek için kritik bir rol oynar. Doğru yağlama stratejisi, uygun yağlama yağı seçimi, yağlama sistemi tasarımı ve düzenli bakım ile dişli çarkların performansını ve ömrünü artırabilir.

Doğru şaft hizalaması, dişli çarkların pitting riskini azaltmak ve uzun ömürlü çalışmasını sağlamak için kritik bir faktördür. Yanlış hizalama, pitting hasarına ve yüzey yorgunluğuna yol açar. Bu nedenle, dişli çarkların montajında doğru şaft hizalaması için gerekli özen gösterilmelidir.

Bu tasarım adımları, mühendislerin pittingi önlemek için tasarım aşamasında alabileceği kritik önlemlerden sadece birkaçıdır.

Referanslar

 [1] ISO /TR 13989:2015 – Dişlilerde tribolojik davranışın değerlendirilmesi

[2] ISO/TR 15144:2002 – Yağlamalı ve yağlamasız dişli çarklarda aşınma ve aşınmanın etkileri

[3]ISO/TR 15144-2:2010 -Dişlilerde aşınma ve aşınmanın etkileri – Bölüm 2: Dişlilerde aşınma mekanizmalarının analizi

[4] ISO /TR 14179-2:2013 – Dişli çarklar – Triboloji – Bölüm 2: Dişlilerde yüzey koşulları ve dişlilerde yüzeylerin işlenmesi

[5] AGMA 925-A03 – Dişli Çarklarda Yağlama Kılavuzu

[6] AGMA 1010-F14 – Dişli Çarklarda Aşınma ve Yıpranma

[7] AGMA 908-B89 – Dişli Çarklarda Triboloji Terimleri 

Mak Müh. Yiğit ERSOY 

Histogram Makina 

Genel Koordinatör

Devamını oku

Dişliler

Tekstil endüstrisinde devrim: Toz metalurjisi tekstil makine dişlileri

Yayın tarihi:

on

Yazan

[voiserPlayer]

Tekstil endüstrisi, teknoloji ve süreçlerdeki ilerlemeler sayesinde son yıllarda benzeri görülmemiş bir büyüme kaydetti. Sektörü dönüştüren teknolojilerden biri de toz metalürjisi (TM) oldu. İnce metal tozları karıştırarak ve bunları yüksek sıcaklıklarda sinterleyerek yüksek kaliteli metal bileşenler oluşturma süreci olan TM, tekstil makineleri de dahil olmak üzere çeşitli uygulamalarda kullanılan güçlü ve dayanıklı bir metal ürün oldu.

Toz metalurjisi tekstil makine dişlilerinin avantajları

1. Üstün kalite: Toz metalurjisi ile üretilen tekstil makine dişlileri, geleneksel dişlilere kıyasla üstün kalite sunar; çünkü benzersiz üretim sürecine sahiptir. TM ile üretilen dişlilerin homojen yoğunluğu, onları daha güçlü ve dayanıklı kılar. Ayrıca, dişlilerin gözeneksiz olması ve boşluk içermemesi, arızalanma ve hasar riskini azaltır.

2. Uygun maliyet: TM dişlileri, seri üretilebilir ve minimal işleme gerektirir. Üretim süreci oldukça verimli olup atık ve hurda malzeme miktarını minimumda tutar. Ayrıca, TM dişlilerinin yüksek hassasiyeti, bakım ve değişim ihtiyacını azaltarak tekstil endüstrisi için maliyet tasarrufu sağlar.

3. Kişiselleştirilebilir: TM dişlileri, belirli gereksinim ve tasarımlara göre üretilebilir. Bu özelleştirme seviyesi, TM sürecinin esnekliği sayesinde mümkündür. Üreticiler, makinelere uyacak şekilde farklı şekil, boyut ve malzemelerde dişliler üretebilir. Bu da tekstil makinelerinin daha verimli olmasını ve daha kısa sürede yüksek kaliteli kumaşlar üretebilmesini sağlar.

4. Çevre dostu: TM süreçleri, daha az enerji gerektirir ve az emisyon üretir. Üretim süreci minimum atık oluşturur ve kullanılan malzemeler çoğunlukla geri dönüştürülmüş veya doğal kökenlidir. Bu durum, TM dişlilerini daha sürdürülebilir yapar ve tekstil endüstrisinin karbon ayak izini azaltır.

 Tekstil endüstrisini devrimleştirme

Toz metalurjisi tekstil makine dişlileri, tekstil üreticilerinin karşılaştığı pek çok zorluğa çözümler sunarak tekstil endüstrisinde devrim yarattı. Bu teknoloji; yüksek kaliteli, maliyetli ve kişiselleştirilebilir dişlilerin üretimine olanak tanıdı. Bu da tekstil makinelerinin verimliliğini artırarak daha kaliteli ürünler, düşük maliyetler ve artan karlılık sağladı.

TM dişlileri aynı zamanda, tekstil endüstrisinin çevresel etkisini azaltarak sürdürülebilirliğini artırdı. Üretim süreci minimum atık oluşturur ve daha az enerji kaynağı kullanır; bu da sürdürülebilir bir üretim seçeneği sunar. Tekstil endüstrisinin azaltılmış karbon ayak izi, küresel bir endişe haline gelmiştir ve TM teknolojisinin benimsenmesi tekstil üreticilerini çözümün bir parçası haline getirdi.

Sonuç olarak, toz metalurjisi teknolojisi tekstil üreticilerinin karşılaştığı zorluklara çözümler sunarak tekstil endüstrisinde devrim yarattı. Yüksek kaliteli, maliyetli ve kişiselleştirilebilir dişli üretme yeteneği, tekstil makinelerinin verimliliğini artırdı. TM teknolojisinin çevresel sürdürülebilirlik yönü, tekstil üreticileri için çekici bir seçenek olmasını sağladı. Son yıllarda popüler hale gelen toz metalurjisi tekstil makine dişlilerinin, gelecek yıllarda tekstil endüstrisindeki kullanımlarının daha da artması bekleniyor.

Devamını oku

Trendler

Copyright © 2011-2018 Moneta Tanıtım Organizasyon Reklamcılık Yayıncılık Tic. Ltd. Şti. - Canan Business Küçükbakkalköy Mah. Kocasinan Cad. Selvili Sokak No:4 Kat:12 Daire:78 Ataşehir İstanbul - T:0850 885 05 01 - info@monetatanitim.com

Dişli Teknolojileri sitesinden daha fazla şey keşfedin

Okumaya devam etmek ve tüm arşive erişim kazanmak için hemen abone olun.

Okumaya devam et